
A Data Broker for Distributed Computing
Environments

L. A. Drummond1, J. Demmel3, C.R. Mechoso2, H. Robinson3, K. Sklower3, and
J.A. Spahr2

1 National Energy Research Scientific Computing Center, Lawrence Berkeley National
Laboratory

Berkeley, CA 94720, USA
Ladrummond@lbl.gov

2 Department of Atmospheric Sciences, University of California, Los Angeles,
Los Angeles, CA 90095-1565, USA
{mechoso,spahr}@atmos.ucla.edu

3 Computer Science Division, University of California, Berkeley
Berkeley, CA 94720-1776, USA

{demmel,hbr,sklower}@cs.berkeley.edu

Abstract. This paper presents a toolkit for managing distributed
communication in multi-application systems that are targeted to run in high
performance computing environments; the Distributed Data Broker (DDB). The
DDB provides a flexible mechanism for coupling codes with different grid
resolutions and data representations. The target applications are coupled
systems that deal with large volumes of data exchanges and/or are
computational expensive. These application codes need to run efficiently in
massively parallel computer environments generating a need for a distributed
coupling to minimize long synchronization points. Furthermore, with the DDB,
coupling is realized in a plug-in manner rather than hard-wire inclusion of any
programming language statements. The DDB performance in the CRAY T3E-
600 and T3E-900 systems is examined

Keywords: MMP systems, Distributed Computing, Data
Brokerage, Coupling.

1 Introduction

The Distributed Data Broker (DDB) is a toolkit for managing distributed
communication in multi-application systems that run coupled in high performance
computing environments. The DDB evolved from a Data Broker designed as a part
of a coupled atmosphere-ocean modeling system, in which the model components can
work on different horizontal resolutions, grid representations and cover different
geographical domains [1]. The high efficiency demanded by those codes in massively
parallel computer environments generated a need for extending the Data Broker in a
way that minimizes long synchronization points inside model components and
memory bottlenecks. Using the DDB, applications are integrated to the coupled

system in a plug-in manner rather than by hard-wire inclusion of any programming
language statements. The DDB was designed under a consumer-producer paradigm,
in which, an application produces data to be consumed by one or more applications,
and an application can be a consumer, producer or both.
This paper is an introduction to the DDB tool. Section 2 presents a summary of the
functionality of the DDB and its library components. A general example of a coupled
application using the tool is described in Section 3. Performance results are shown in
Section 4.

2 The Distributed Data Broker.

The functionality of the DDB is encapsulated in a modular design that contains three
libraries of routines that are built to work together and called on demand from
different places inside the codes to be coupled. These DDB components are the
Communication Library (CL), The Model Communication Library (MCL) and the
Data Translation Library (DTL). The CL is the core library of routines that it is used
to implement the point-to-point communication between computational nodes in a
distributed environment. This DDB component encapsulates the functionality of
widely used message passing software like PVM 3 or MPI into the DDB context. A
more technical description of the CL is presented in [3]

Two types of steps characterize the coupling of applications using the DDB; an
initial registration step and subsequent data communication steps. The MCL provides
an API (Application Programming Interface) that supports the implementation of both
steps from C or Fortran programs. The registration step is an initial code “handshake”
in which different codes exchange information about the production and consumption
of data. The registration step begins with the identification of a process or a task as
the Registration Broker (RB) with a call to the MCLIamRegisgtrationBroker
routine. There is only one RB per coupled run and this task only exists during the
registration step. This implies that after the registration step, the process acting as the
RB can perform any other tasks inside one of the applications being coupled. In
addition, each application must identified a control process (CP), each CP is
responsible for reporting global domain information to the application like grid
resolution, number of processes, data layout, and frequency of production or
consumption to the RB. The RB can also be the CP for the application that spawns it.

The RB starts collecting information from all the CP's. Then, the RB processes
this information to match producers against consumers. For example if Process 1 of
Model A is designated as the RB as in Fig. 1, this collects general information from
process 1 of Model B (such as global domain, grid resolution, number of processes,
and frequencies of production and consumption. Without loss of generality, in this
example we depicted one model that works in a wider domain than the other, and uses
a different horizontal grid spacing. The DDB will also works with equal domains,
and equal grid spacing as long as a geographical domain can be mapped into the other
domain and a grid translation function exist between both grids.

Lastly, the registration step ends with a call to MCLRegistration from all other
processes participating in the coupling to register their process id and subdomain.

Every process receives back a list of processes that it will exchange data with at
execution time. As a result, every participating process in the coupling has enough
information to send and receive data from its peers without the need of a centralized
entity regulating the exchanges of information.

ModelB_P4

ModelB_P3

ModelB_P2

ModelB_P1

ModelA_P2

ModelA_P4

ModelA_P1
(RB)

ModelA_P3

ModelA_P1 = RB
Collects domain informatinon
and grid resolutions from ModelB
(grey area), data to be produced
and consumed by models

MODEL A

MODEL B

COUPLING DOMAIN

Fig. 1. DDB registration step. Registration Broker (RB) collects information of every model
(i.e., model A and model B). This information includes: model’s resolution, domain, offers for
data production, requests for data production, frequency of consumption and production of
data, and parallel data layout.

Fig. 2 presents an schematic of all the MCL routines that implement the
registration and communication steps. The communication step is characterized by
patterns of communication between the coupled components. A producer code that
wants to send data to its consumers, will simply execute a call to MCLSendData,
which gets translated into several CL commands that in turn call the MPI or PVM
libraries to complete the communication step. Thus, the MCL-CL interface provides
a level of transparency and code portability because the communication syntax used
inside a program remains invariant when porting the code from PVM 3 to MPI or
vice-versa and these communication packages in turn provide portability across
platforms.

The Distributed Data Broker (DDB)
Modular Design

DTL: Data Translation Library

MCL: Model Communication Library

CL: Communication Library

PVM3

L
inear Interpolation C

oarse - Fine G
ridL

in
ea

r
E

xt
ra

po
la

tio
n

 F
in

e
-

C
oa

rs
e

G
ri

d MCLStartMetaRegistration

MCLPoll

MCLGetDataMCLSendData

MCLMetaRegister
MCLEndMetaRegistration

MCLStartRegistration
MCLRegisterProduce/MCLRegisterConsume

MCLEndMetaRegistration

First Registration Phase: Gather global
data domain information, frequency of
production and processor layout

Second Registration Phase: Gather subdomain data production
and consumption. Format and data translation specification

LILRegisterCoordinates

Communication Step

Fig. 2. Schematic of the DDB. The Application Programming Interface is provided via the
MCL. In turn the MCL makes use of the CL library to interface with standard message
passing libraries like PVM and the user-defined Data Translation Libraries. The current DDB
has implemented a Linear Interpolation Library (LIL) of routines

The basic MCL communication phase has two operations, MCLGetData and
MCLSendData. A user's call to MCLSendData automatically generates one or
many calls to the send-routine in the CL library, one per consumer of the data
produced (e.g., one pvmfsend per consumer). Similarly, a user's call to
MCLGetData automatically receives one or many messages, pastes them together
and transforms them into compatible data for the consumer's grid using a predefined
DTL routine. The DTL component handles the data transformations from a producer's
grid to the consumer's grid. The DTL routines are invoked by certain calls to the
MCL that deliver data at the consumer end (i.e., MCLGetData) The DTL can
include several numerical transformation routines and the user can decided the
transformation algorithm to be used according to the numerical requirements f the
applications. In any case, the calls to the MCL library remain the same but each of

the low-level transformation routines in the DTL are overloaded with different
procedures depending on the context. In view our current coupling scenarios and
requirements for data transformations, we have implemented a set of linear
interpolation routines.

3. An Example of Coupling with the DDB.

The current version of the Distributed Data Broker (DDB) is being used to couple
different model components of the UCLA Earth System Model (ESM) under the
NASA/ESS HPPC program. In this system the model components are parallel codes
that in turn run in parallel exchanging atmospheric or oceanic fields in a prescribed
time intervals. In conventional couplers, these data exchanges and translations are
handled using a centralized global domain algorithm. Here we present a fully
distributed approach to coupling in which the data translations between models are
handled in parallel and using a subdomain based numerical algorithms. The DDB
approach to coupling promotes high levels computational efficiency by reducing the
number of synchronization points, the need of global reductions operations, and idle
nodes in the system.

The UCLA Atmospheric General Circulation Model (AGCM) is a state of the art
grid point model of the global atmosphere ([2],[5]) extending from the Earth's surface
to a height of 50 km. The model predicts the horizontal wind, potential temperature,
water vapor mixing ratio, planetary boundary layer (PBL) depth and the surface
pressure, as well as the surface temperature and snow depth over land. The Oceanic
General Circulation Model is the Parallel Ocean Program (POP), which is also based
on a two-dimensional (longitude-latitude) domain decomposition [4], and uses
message passing to handle data exchanges between distributed processors.

The UCLA AGCM is a complex code representing many physical processes.
Despite the complexity of the code, one can identify the following two major
components:

• AGCM/Dynamics, which computes the evolution of the fluid flow governed
by the appropriate equations (the primitive equations) written in finite
differences.

• AGCM/Physics, which computes the effect of processes not resolved by the
model's grid (such as convection on cloud scales) on processes that are
resolved by the grid (such as the flow on the large scale).

The OGCM also has two major components:

• OGCM/Baroclinic, determines the deviation from the vertically averaged
velocity, temperature and salinity fields.

• OGCM/Barotropic, determines the vertically averaged distributions of
those fields.

AGCM
PHYSICS

AGCM
DYNAMICS

AGCM
DYNAMICS

AGCM
PHYSICS

OGCM
BAROCLINIC

OGCM
BAROTROPIC

OGCM
BAROCLINIC

SURFACE
FLUXES

SURFACE
FLUXESSST

AGCM

OGCM

AGCM/OGCM Coupling Sequence
(Parallel Execution of the AGCM and OGCM)

t=0

t=0

t=∆t t=2∆t

t=∆t

Fig. 3. Distributed AGCM-OGCM coupling. The AGCM send surface fluxes to the
OGCM and receives in return Sea Surface Temperature. This exchanges happen at regular
intervals ∆t

The coupled atmosphere-ocean GCM, therefore, can be decomposed into four
components. When run on a single node the AGCM and OGCM codes execute
sequentially and exchange information corresponding to the air-sea interface. The
AGCM is first integrated for a fixed period of time and then transfers the time-
averaged surface wind stress, heat and water fluxes to the OGCM. This component is
then integrated for the same period of time and transfers the sea surface temperature
to the AGCM. The data transfers, including the interpolations required by differences
in grid resolution between model components, was originally performed by a suite of
coupling routines and we refer to this approach as the centralize coupling approach.
Coupling with the DDB is realized with a registration step followed by model
computations and inter-model communication handled by MCLGetData and
MCLSendData calls. The necessary data translations are also performed under these
calls.

The coupled GCM runs in a parallel environment following the scheme depicted in
Fig. 3, which allows the two codes to run in parallel. Because there are no data
dependencies between the AGCM/Dynamics and the OGCM/Baroclinic, these
components can run in parallel. Further, AGCM/Physics can start as soon as
OGCM/Baroclinic completes its calculation, because this module provides the sea
surface temperature. Similarly, The AGCM/Physics can run in parallel with
OGCM/Barotropic.

4. Performance Results.

This section presents some results obtained from running the coupled UCLA
AGCM/OGCM model described in section 3. We compare here the centralized
coupling against the decentralized one. Fig. 4 to Fig. 6 shows the model resolutions
used in each case, and compare the memory and time required by the coupling
interfaces

OGCM AGCM

POP code
1/6 lat x 1/6 lon, 37 levels

 128 CRAY T3E-600 Nodes
(16Mw/node)

UCLA AGCM code
2 lat x 2.5 lon, 29 levels
128 CRAY T3E nodes

(16Mw/node)

OGCM AGCM

MEMORY REQUIREMENT FOR COUPLING

OM

AM

Centralized Data Brokerage
Tmem = Mogcm + Minterp + Mgathr_scatr

Tmem = 7.2 Mw + 2.5 Mw + 3.1Mw
 = 12.8 Mw

Minterp = O(Nfinegrid)

Mgathr_scatr = O(Nfinegrid)

Mogcm = Memory required
 by the OGCM

North Atlantic Global

Distributed Data Brokerage

Tmem = Mogcm + Minterp/Nprocs

Tmem = 7.2Mw + 2.5Mw/128
 = 7.3 Mw

OGCM AGCM

Fig. 4. Memory requirements for centralized and distributed coupling.

Fig. 4 and Fig. 5 illustrate comparison results based on the memory requirements
for both coupling implementations. In Fig. 4, the centralized data brokerage requires
almost twice as much memory as the distributed data brokerage because it needs to
collect the entire grid from one model in a single node. In the distributed case, each
processor has enough information to produce the data needed by consumer processes
and communication is realized in distributed manner. In Fig. 5, a more drastic
scenario is presented, in which the centralized coupling cannot be realized because of
the 45Mw memory requested in a single computational node. In this case the
distributed case requires less than a third of the memory requested by the centralized
approach.

Fig. 6 compares the execution time between the two coupling approaches, and in
this case the AGCM is sending 4 fields to the OGCM, and the requested time by the
distributed approach is one third of the centralized. In the reverse communication, the

OGCM sends a single field to the AGCM and the requested time is also greatly
reduced with the distributed approach.

OGCM AGCM

POP code
1/6 lat x 1/6 lon, 37 levels

 128 CRAY T3E-600 Nodes
(16Mw)

UCLA AGCM code
2 lat x 2.5 lon, 29 levels
128 CRAY T3E nodes

(16Mw)

OGCM AGCM

MEMORY REQUIREMENT FOR COUPLING

OM

AM

Centralized Data Brokerage
Tmem = Mogcm + Minterp + Mgathr_scatr

Tmem = 22.1 Mw + 15.2 Mw + 18Mw
 = 55.3 >> Memory available in a node !!!

Minterp = O(Nfinegrid)

Mgathr_scatr = O(Nfinegrid)

GlobalGlobal

doubling OGCM nodes:
Tmem = 12.3 Mw + 15.2 Mw + 18Mw

 = 45 Mw > Memory available in a node !!!

Distributed Data Brokerage
Tmem = Mogcm + Minterp/Nprocs

Tmem = 22.1 Mw + 15.2Mw/128
 = 22.1 Mw >> Memory available in a node !!!

doubling OGCM nodes:
Tmem = 12.3 Mw + 15.2 Mw/256

 = 13 Mw

OGCM AGCM

Fig. 5. Memory requirements for centralized and distributed coupling. First, we double the
resolution OGCM resolution and increase the number of nodes

Fig. 7 presents the asymptotic behavior of centralized vs. distributed coupling. As
indicated the number of seconds required by coupling the AGCM/OGCM in the
centralized case (one process case) grows exponentially as the problem size is
increased. The time requested by the distributed coupling approach, the DDB, is
reduced as the number of processes is also increased.

5. Conclusions.

As computational sciences continue to push forward the frontier of knowledge about
physical phenomena, more complex models are and will be developed to enable their
computerized simulations. The demand for computational resources to carry out
these simulations will also increase, as well as the need for optimized tools that help
application developers to make better of use of the available resources. The DDB
addresses not only the issues of optimal coupling, but also provides a flexible
approach to coupling models and applications in a “plug-and-play” manner rather
than intrusive coding in the applications.

OGCM AGCM

POP code
1/6 lat x 1/6 lon, 37 levels

128 CRAY T3E nodes
North Atlantic

UCLA AGCM code
2 lat x 2.5 lon, 29 levels
128 CRAY T3E nodes

OGCM AGCM

TIMING MODEL FOR COUPLING INTERFACE
COUPLING INTERVAL 24 hours

OM

AM

Centralized Data Brokerage

Tsync = Time it takes to synchronize
 models at coupling point

Tinterp = O(nfinegrid)
Tgath/scat = 2 X Tcomm + Tassembly
Tcomm = Tstartup + Tlatency
Tassembly = O(nfinegrid)

Tcoup = 1.0 secs (OGCM -> AGCM)
= 1.5 secs (AGCM -> OGCM)

Tcoup = Tsync + Tgath/scat + Tinterp

OGCM AGCM

Distributed Data Brokerage

Tcoup = 0.30 secs (OGCM -> AGCM)
= 0.42 secs (AGCM -> OGCM)

Tcoup = Tsync + Tinterp/nprocs + Tcomm

Fig. 6. Simplified Timing model of centralized vs. distributed coupling.

500
400

300
200

100

50

100

150

200

250

-9

-8

-7

-6

-5

-4

-3

-2

Number of T3E nodes

S
ec

on
ds

 p
er

 S
im

ul
at

ed
 d

ay

Problem Size

1 node
(cdb)

10

10

10

10

10

10

10

10

10

 1
-1

Fig. 7. Asymptotic behavior of centralized vs. distributed coupling .

Further development of the DDB is still under way at University of California, Los
Angeles and collaborators at UC Berkeley. Future agenda includes the inclusion of
higher order interpolations for data translations, use of other communication libraries
such as MPI, and continue to prototype other scientific applications using the DDB
technology.

Acknowledgements.

This project has been supported by the NASA High Performance Computing and
Communication for Earth and Space Sciences (HPCC-ESS) project under CAN
21425/041. The tests were performed at the Department of Energy’s National Energy
Research Scientific Computing center (NERSC)

REFERENCES.

1. Drummond, L. A., J. D. Farrara, C. R. Mechoso, J. A. Spahr, J. W. Demmel, K. Sklower and
H. Robinson, 1999: An Earth System Model for MPP environments: Issues in coupling
components with different complexities. Proceedings of the 1999 High Performance
Computing - Grand Challenges in Computer Simulation Conference April 11-15, 1999, San
Diego, CA, 123-127.

2. Mechoso, C. R., L. A. Drummond, J. D. Farrara, J. A. Spahr, 1998: The UCLA AGCM in
high performance computing environments. In Proceedings, Supercomputing 98, Orlando,
FL.

3. Sklower, K., H.R. Robinson, L.A. Drummond, C.R. Mechoso, J. A. Spahr, E. Mesrobian,
2000: The Data Broker: A decentralized mechanism for periodic exchange of fields between
multiple ensembles of parallel computations
http://www.cs.berkeley.edu/~sklower/DDB/paper.html

4. Smith, R.D., J.K. Dukowicz, and R.C. Malone, 1992: Parallel Ocean General Circulation
Modeling, Physica D, 60, 38-61.

5. Wehner, M. F., A. A. Mirin, P. G. Eltgroth, W. P. Dannevik, C. R. Mechoso, J. D. Farrara
and J. A. Spahr, 1995: Performance of a distributed memory finite-difference atmospheric
general circulation model. Parallel Computing, 21, 1655-1675.

